MATH 53, QUIZ 3
Be sure to show neat, organized, complete work in the space provided.

1. This problem refers to Figure 1. Let A be the plane $2 x+2 y-z=1$ and let B be the plane $x+y+2 z=6$.
(a) Find a vector parallel to the line of intersection L of these two planes.

METHOD 1: take cross product of normals:

$$
\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
2 & 2 & -1 \\
1 & 1 & 2
\end{array}\right|=\langle 5,-5,0\rangle
$$

METHOD 2: Try to solve system

$$
\begin{aligned}
& \left\{\begin{array}{l}
z=2 x+2 y-1 \\
x+y+2 z=6
\end{array}\right. \\
& \left\{\begin{array}{l}
z=2 x+2 y-1 \\
5 x+5 y=8
\end{array}\right.
\end{aligned}
$$

2A: Find 2 solutions, e.g. $\left(0, \frac{8}{5}, \frac{11}{5}\right) \&\left(\frac{8}{5}, 0, \frac{11}{5}\right)$ Take difference: $\left\langle\frac{8}{5},-\frac{8}{5}, 0\right\rangle$

2B: Parametrize all solutions:

$$
\vec{r}(t)=\left\langle t, \frac{8}{5}-t, \frac{11}{5}\right\rangle
$$

which has direction vector $\langle 1,-1,0\rangle$.

Answer: \qquad
(b) Find the equation of the plane C which is perpendicular to L and passes through the point P with coordinates ($3,-4,2$).

Hare normal sec \& pt:

$$
\begin{gathered}
(1)(x-3)+(-1)(y-(-4))+(0)(z-2)=0 \\
x-3-y-4=0
\end{gathered}
$$

Figure 1: The planes A and B intersect in the line L. The plane C is perpendicular to L and passes through the point P.

Answer:

$$
x-y-7=0
$$

\qquad
2. Identify the following shapes in \mathbb{R}^{3}. Here is the list of possible answers:
ellipsoid, elliptic paraboloid, hyperbolic paraboloid, hyperboloid of one sheet, hyperboloid of two sheets, cone, cylinder, single point, empty (no solutions).
(a) $x^{2}+y^{2}-3 z^{2}=2$

Answer: hyperboloid of one sheet
(b) $3 x^{2}+6 y^{2}-3 z=0$

Answer: elliptic paraboloid
(c) $2 x^{2}=14-y^{2}-3 z^{2}$

Answer: ellipsoid
(d) $5 x^{2}+y-3 z^{2}=-3$

Answer: hyperbolic paraboloid
(e) $x^{2}=y-y^{2}$

Answer: (elliptic/circular) cylinder

